LDX 2101 is a lean duplex stainless steel designed for general purpose use. Like other duplex stainless steels, LDX 2101 provides both superior strength and chloride stress corrosion cracking resistance compared to 300 series stainless steels. The use of manganese ensures proper ferrite-austenite phase balance, while allowing a reduction in nickel content. As a result, LDX 2101 is priced competitively with 304/304L and 316/316L stainless steels.

The combination of a duplex structure and high nitrogen content provide significantly higher strength levels than 300 series stainless steels. Often a lighter gauge of LDX 2101 can be utilized, while maintaining the same strength as a 300 series fabrication. The resultant weight savings can dramatically reduce the material and fabrication costs of a component.

Specifications	UNS: S	32101	W. Nr./EN: 1.4	162 A	ASTM: A 240	ASME:	SA-240					
Chemical Composition, %		Ni	Cr	Mo	Mn	Cu	Si	C	N	S	Р	Fe
	MIN	1.35	21.0	0.1	4.0	0.1	-	-	0.2	-	-	-
	MAX	1.7	22.0	0.8	6.0	0.8	1.0	0.04	0.25	0.03	0.04	balance
Features	 High High Goo Chlo Goo Goo Goo Goo Usel 	n resistan n strengt d fatigue ride pitt d generc d machin ful up to	nce to chloride h e strength ing resistance Il corrosion res nability and we 600°F	stress compa istance eldabili	corrosion arable to ty e ity	cracking ype 316L	(SCC) stainless					
Applications	 Cher Pulp Mixo Stor Was Etha 	mical pro and pa ers and c age tanl te water inol proc	ocess pressure per mill equipr agitators <s r handling syst luction</s 	vessel nent ems	s, piping a	ind heat i	exchangers					
Physical Properties	Density: 0.278 lb/in ³ Melting Range: 2525-2630°F Poisson's Ratio: 0.3 Electrical Resistivity: 481 Ohm-circ mil/ft											
	Tempe	erature, °I		70			212		392		572	
	Coeffi in/in°	cient* of 1 'F x 10-6	hermal Expansion	ı, —			7.5		7.8		8.1	
	Therm Btu •	al Conduc ft/ft² ● hr	tivity • °F	9.2			9.8		11.0		11.6	
	Modu nsi x	us of Elas	licity Dynamic,	29.7	7		29		27.6		26.1	

* 70°F to indicated temperature.

Mechanical Properties

Minimum Specified Properties, ASTM A 240

Ultimate Tensile Strength, ksi	94
0.2% Yield Strength, ksi	65
Elongation, %	30
Hardness MAX, Brinell	290

Minimum Elevated Temperature Tensile Properties, Plate

Temperature, °F	212	302	392	572
Ultimate Tensile Strength, ksi	85.6	81.2	78.3	78.3
0.2% Yield Strength, ksi	55.1	50.8	47.9	43.5

ASME Boiler & Pressure Vessel Code, Section VIII, Division 1, Allowable Stress Values, ksi

Temperature, °F	200	300	400	500	600
LDX 2101	26.9	25.6	24.7	24.7	24.7
304	20.0	18.9	18.3	17.5	16.6
316	20.0	20.0	19.3	18.0	17.0
2205	25.7	24.8	23.9	23.3	23.1

© 2011 Rolled Alloys®

The data and information in this printed matter are believed to be reliable. However, this material is not intended as a substitute for competent professional engineering assistance which is a requisite to any specific application. Rolled Alloys makes no Bulletin No. 2100USe 12/16 warranty and assumes no legal liability or responsibility for results to be obtained in any particular situation, and shall not be liable for any direct, indirect, special, or consequential damage therefrom. This material is subject to revision without prior notice